

Building Solutions

Construction Fixed: Conquering Home Performance

Errors 2017 RESNET

Dow.com

Brian Lieburn

- Research Scientist
 - Residential Application Development
- Dow Building Solutions since 2010
- 25 Years in Production Homebuilding
- BS from University of Wisconsin Stout

Why this Presentation?

Building Elements Overview

Structural Element

Water Control Layer – Red Line

Water Control Layer

Thermal Control Layer – Blue Line

Air Control Layer – Green Line

Vapor Control Layer – Gold Line

System Effect on Performance

Energy & Moisture

Dov

Problems and Solutions

Building Solutions

Adequate Insulation at Truss/Rafter Heel

- Energy loss
- Ice Dams

Adequate Insulation at Truss/Rafter Heel

Raised Heel Trusses

Higher R-value Insulations

Unvented Attics

Truss/Rafter Heel – Re-Roof Application

Ceiling Penetrations

Can Lights

PROBLEMS & SOLUTIONS

Bath Fans

Duct Boots

Air Leaks & Appropriate Insulation Over

Top Plate Air Sealing

PROBLEM

- Significant source of energy loss*
 - *Wolf, Dave; Characterization of Air Leakage in Residential Structures
- Durability issues

Top Plate Air Sealing

SOLUTIONS

Caulk or Drywall Adhesive

Gasket, Sill Seal,

SPF on Top

CONSIDER: Inspection of solutions

Ceiling Penetrations

PROBLEMS & SOLUTIONS

Common Wall Heat Loss

PROBLEM

- Adjacent walls each insulated with R-13 FG that only has 5 sides of contact
- Adjacent trusses have 2 layers of 5/8" Type "X" gypsum per fire code
- Allows heat loss through common walls to stack right up to roof deck
 - Energy loss
 - Condensation on underside of roof sheathing

Common Wall Heat Loss

SOLUTIONS

- Air seal to prevent heat loss from conditioned common wall area to unconditioned attic area
- Fireblocking is required!!
- Air barrier on the back side of these walls.

Venting to Soffits

PROBLEM

• Allows warm humid air to be pulled back into attic space

Venting to Soffits

SOLUTIONS

• Don't exhaust through soffit

Building Solutions

Thermal Bridging

PROBLEM

Energy Performance Research Neighborhood

Midland Michigan Climate Zone 5-6

Continuous Insulation vs Cavity Only

2x6 OSB & HW

2x4 R5 ci & R16 SPF

Dow

Thermal Bridging

SOLUTION

Stucco & Adhered Masonry

Photo: Building Science Corp.

Inward Vapor Drive

PROBLEM

- Rain causes cladding to absorb water
- Sun causes drying in both directions
 - Outward Good
 - Inward Bad -
- Temperature drop in evening causes condensation on sheathing surface

Effect of Decay on Strength of Wood

Decay initially affects toughness, or the ability of wood to withstand impacts. This is generally followed by reductions in strength values related to static bending. Eventually, all strength properties are seriously reduced.

Strength losses during early stages of decay can be considerable, depending to a great extent upon the fungi involved and, to a lesser extent, upon the type of wood undergoing decay. In laboratory tests, losses in toughness ranged from 6% to >50% by the time 1% weight loss had occurred in the wood as a result of fungal attack. By the time weight losses resulting from decay have reached 10%, most strength losses may be expected to exceed 50%. At such weight losses (10% or less), decay is detectable only microscopically. It may be assumed that wood with visually discernible decay has been greatly reduced in all strength values.

USDA – Forest Service – Forest Products Lab – General Technical Bulletin FPL-GTR-190 – Wood Handbook

Inward Vapor Drive

SOLUTIONS

- Ventilation space
- Low perm CI or WRB

FROG's (Finished Rooms Over Garages)

- Difficult to keep comfortable
 Why?
- Surrounded by exterior on 5 of 6 sides
- Long duct runs
- Inadequate Insulation
 - Dropped ceilings in garages
 - Heat runs
 - Plumbing chases
 - Knee walls
 - Sloped rafters

FROG's (Finished Rooms Over Garages)

SOLUTIONS

• Floor

- Spray foam in floor

- Continuous insulation on underside of joists
 - Hardwood floor issues
- Completely fill void with insulation
- Ducts
 - Manual J, D, & S
 - Commissioning
- Rafters
 - Fur down to achieve R-value

Knee Walls

- Comfort Issues
- Energy loss

Knee Walls

SOLUTIONS

- Spray foam
- Air Barrier on exposed side of attic
- Continuous insulation on exposed side of attic

Cantilevers

- Frozen pipes
- Continuity of air barrier
- Difficult to insulate effectively

Cantilevers

SOLUTIONS

- Spray foam
- Dense pack insulation
- Air barrier all six sides insulation
- Continuous insulation on underside of joists

Dormers & Bay Windows

- Complex difficult to air seal
- Difficult to adequately insulate to prevent condensation

Dormers & Bay Windows

SOLUTIONS

- Unvented attic
- Spray foam
- Fibrous insulation
 - Detailed Air Barrier
 - Vapor retarder (climate appropriate)
 - Adequate insulation
- Continuous insulation on top of roof deck
 - Keep roof deck above dew point

Bathroom Condensation

Bathroom Condensation

SOLUTIONS

- Properly sized bath fan
- Adequate bath fan exhaust duct
- Humidistat control
- Bath fan timer
- Air seal
- Insulation
- Occupant education

Shower Surround – Mold Behind Tile

Shower Surround – Mold Behind Tile

SOLUTIONS

• Continuous insulation on exterior walls

Headers

- Inadequate insulation
- Fiberglass compressed in headers has reduced effective R-Value

Headers

SOLUTIONS

- Relocate to rim joist
- Size minimal
- Use higher R-value insulations
- Continuous insulation on exterior

	OSB	1/2″ XPS
2x4	R-3.5	R-6
	OSB + FG	2" XPS
2x6	R-10	R-13.5

Electric Outlets

Electric Outlets

SOLUTIONS

- Shallower boxes
- Higher R-value insulation behind
 - Rigid Foam between the box and sheathing
 - SPF
 - CI on exterior
- Air seal

Building Solutions

Building Solutions

Rim Joist

2.9

Rim Joist

Engineered rim joist R5 ci & SPF

Rim Joist pic of Rigid foam picture framed

St

a star and a star the

Rim Joist – SPF

Building Solutions

Why Insulate Foundations?

Heat Loss from Basement Wall

(Builders' Guide to Residential Foundation Insulation Kansas Corporation Commission - Energy Programs)

Basement Insulation

Basement Insulation

SOLUTIONS

This picture is from "Basement Insulation Systems" by Building Science Corporation 2002.

Building Solutions

Basement Floor Insulation

SOLUTIONS

• CONDUCTIVE HEAT LOSS:

- Uninsulated Basement Floor:
- 1000 SFT X (65-54)/ R-1 = 11,000 BTU
- Insulated Basement Floor (R-10 XPS)
- 1000 SFT X (65-54)/ R-11 = 1,000 BTU
- Largest uninsulated surface left in the home!

Other Common Problems?

Building Solutions

Building Solutions

Thank You